
telegraphy Documentation
Release 0.1

Carlos de la Torre, Nahuel Defossé

December 16, 2013

Contents

1 Getting It 3

2 Get Involved 5

3 Contents 7
3.1 Installation instructions . 7
3.2 The Telegraphy Project . 9
3.3 Gateway . 10
3.4 django-telegraphy . 12
3.5 Authentication shortcomings . 14
3.6 Examples . 14
3.7 WAMP Authentication and Extended Session . 16

4 Indices and tables 17

i

ii

telegraphy Documentation, Release 0.1

Project home: https://github.com/machinalis/telegraphy/

The Telegraphy Project provides real time events for WSGI Python applications with additional features such as event
filtering, subscription persistence and authorization/authentication.

It’s initially intended for Django but you can extend it to any WSGI framework.

WebSocket pub/sub and RPC is based on AutobahnPython implementation of WAMP protocol

Contents 1

https://github.com/machinalis/telegraphy/
http://autobahn.ws/
http://wamp.ws/

telegraphy Documentation, Release 0.1

2 Contents

CHAPTER 1

Getting It

You can get Telegraphy by using pip:

$ pip install telegraphy

Or grab the source code from the GitHub repository and run setup.py:

$ git clone git://github.com/machinalis/telegraphy/telegraphy.git
$ cd telegraphy
$ python setup.py install

For more detailed instructions check out our Installation instructions. Enjoy.

3

telegraphy Documentation, Release 0.1

4 Chapter 1. Getting It

CHAPTER 2

Get Involved

We are eager to hear from the community: to receive suggestions, bug-reports, participate in discussions and improve
Telegraphy as much as it’s possible.

For all of that, we have a Google group in http://groups.google.com/group/telegraphy

Also, to guide the development efforts and issues, we are using GitHub’s issue tracker.

5

http://groups.google.com/group/telegraphy
https://github.com/machinalis/telegraphy/issues

telegraphy Documentation, Release 0.1

6 Chapter 2. Get Involved

CHAPTER 3

Contents

3.1 Installation instructions

3.1.1 Get It

Pip

You can get Telegraphy by using pip:

$ pip install telegraphy

You will need to have pip installed on your system. On linux install the python-pip package, on windows follow this.
Also, if you are on linux and not working with a virtualenv, remember to use sudo for both commands (sudo pip
install telegraphy).

Download

Download the latest packaged version from http://pypi.python.org/pypi/telegraphy/ and unpack it. Inside is a script
called setup.py. Enter this command:

$ python setup.py install

...and the package will install automatically.

Source code

Telegraphy is hosted on github:

https://github.com/machinalis/telegraphy

Source code can be accessed by performing a Git clone.

The following command will check the application’s source code out to a directory called telegraphy:

Git:

7

http://stackoverflow.com/questions/4750806/how-to-install-pip-on-windows
http://pypi.python.org/pypi/telegraphy/

telegraphy Documentation, Release 0.1

$ git clone git://github.com/machinalis/telegraphy/telegraphy.git

You should either install the resulting project with python setup.py install or put the telegraphy directory in your
PYTHONPATH.

You can verify that the application is available on your PYTHONPATH by opening a Python interpreter and entering
the following commands:

>>> import telegraphy

No exceptions should raise.

Keep in mind that the current code in the git repository may be different from the packaged release. It may contain
bugs and backwards-incompatible changes but most likely also new goodies to play with.

System dependencies

One of our main dependencies, Twisted, requires gcc which is not available by default.

In Ubuntu-like systems you’ll need to install python-dev:

$ sudo apt-get install python-dev

To build the documentation, you’ll need to have Sphinx installed:

$ pip install Sphinx

To help in the documentation elaboration, we have a small script that detects changes while you are working and
automatically builds the doc: ./autobuild-docs.sh . If you want to use it, you’ll need inotify:

$ sudo apt-get install inotify-tools

3.1.2 Installing the Django app

Telegraphy’s Django app is bundled within the contrib directory in the Telegraphy root.

It is installed with the standard procedure: in your project’s settings.py file add
telegraphy.contrib.django_telegraphy to the INSTALLED_APPS:

INSTALLED_APPS = (
...
’telegraphy.contrib.django_telegraphy’,
...

)

The default TEMPLATE_CONTEXT_PROCESSORS do not include the request as a variable in the context so, if you
haven’t done so yet, add django.core.context_processors.request:

TEMPLATE_CONTEXT_PROCESSORS = (
’django.core.context_processors.request’,
...

)

8 Chapter 3. Contents

https://docs.djangoproject.com/en/dev/ref/settings/#template-context-processors

telegraphy Documentation, Release 0.1

3.2 The Telegraphy Project

This project is about making the real-time web easier for the Django developers (and to Python web-developers in
general).

In a very general way, the issue we want to solve is How can I easily receive and handle server-side generated
events, on the frontend?.

There’s a lot going on about this. There are many standards, protocols, tools, services and sophisticated frameworks
related to this issue. But most of them have at least one of the following problems:

• They don’t solve the whole problem

• They are not easy to use.

• They are not well documented.

Therefore, our main objectives are to provide:

• well documented and tested tools,

• that are simple to install and use,

• which rely on open standards and protocols,

• to emmit and handle asynchronous, server-side events in real-time.

3.2.1 Architecture

Overview

The Telegraphy project’s architecture has three main components:

• A web-application that registers and emits events.

• A gateway is a scalable, high-performance, asynchronous, networking engine.

• A client api which talks WAMP (through a WebSocket) with a Gateway. This is normally a JavaScript
loaded from a web-page.

3.2. The Telegraphy Project 9

http://wamp.ws/

telegraphy Documentation, Release 0.1

One of the objectives of the project is to keep these main components decoupled. For each one of them there are
several available technologies (and more will appear). For example:

• The web-app can be anything from a full-scale desktop or web application to a simple script.

• The gateway can be implemented using Twisted, Tornado, Node, ...

• The web-app and the gateway can communicate through an XML-RPC lib, or using message queues such as
ØMQ, RabbitMQ, ...

• The client can be anything implementing WAMP over WebSockets, typically a Javascript program.

The current implementation is based on Django for the web-app and client side components. The gateway is imple-
mented using Twisted.

Django app A very useful app is provided. It features a class-based mechanism to extend the application’s models
with the capability to generate server-side events.

Also, template tags and a Javascript API (based on AutobahnJS) are provided. These make it really easy to
handle the events on the client side.

Gateway Currently, a Twisted-based server using AutobahnPython).

The web-app and gateway communicate through XML-RPC with a shared-configuration approach.

3.3 Gateway

WORK IN PROGRESS!!!

10 Chapter 3. Contents

http://twistedmatrix.com/
http://www.tornadoweb.org/en/stable/
http://nodejs.org/
http://zeromq.org/
http://www.rabbitmq.com/
https://www.djangoproject.com
http://twistedmatrix.com/
http://autobahn.ws/js
http://autobahn.ws/python/
https://twistedmatrix.com/documents/12.2.0/web/howto/xmlrpc.html

telegraphy Documentation, Release 0.1

3.3.1 Interface with the client

The general idea behind the gateway is to provide an asynchronous-events management server.

Its interface with the client applications is based on the WAMP protocol. The current version relies on Autobahn-
Python, which provides a fully asynchronous Twisted-based implementation.

3.3.2 Interface with the web-app

On the other side, the interface with the web-app is not yet fully defined. Currently, the gateway receives event’s data
through XML-RPC, which is very general and flexible, but not highly performant.

As the project’s functionalities develop and new features are added, the comunication of the web-app and the gateway
will be encapsulated in a specific API, whose implementation will probably use some message-passing tool, such as
ZMQ, RabbitMQ, etc.

The current ideas are based in some proxy module that provides a uniform interface for the web-app. Such proxy
communicates with a gateway representative, that is connected-to/part-of the current running gateway instance. The
proxy and representative can be in sync by a shared-configuration policy.

Such architecture would allow the web-app to be independent of the communication mechanism with the gateway.
Many implementations can be maintained and used as needed (XML-RPC, message-queue, etc.).

3.3.3 Features (Notes)

Provides an asynchronous-events management server.

Web-app agnostic: even when the current implementation uses Django, the design of the gateway shall be completely
independent of the web-app technology. Ideally, the interfaces should be open, standard and well defined so that any
program should be able to interact with the gateway (even non-Python programs!).

The gateway has the responsability to assure continuous service. Changes in configuration or events definitions must
be transparent for the client (if possible). Otherwise, specific resources must be design in order to be able to implement
client-side mechanisms to remain “connected” (reconnect, etc).

Client representatives identification: on connection, the Gateway provides a unique identifier (token). The representa-
tives saves the token in a cookie. The cookie has an expiration time defined by the Gateway.

Persistent subscriptions: a client may decide that a given subscription to an event is ‘permanent’. The subscription
mechanism provided by the protocol must include some parameter to indicate this situation.

• Real Time Events

– Authentication

– Subscription handling

* Public vs Authenticated Events

* Subscription management (client or event based)

– Event management

* Class based event definition

* Event query language

· Performance

· Simplified client side subscription handling

· Easy channel emulation

3.3. Gateway 11

http://wamp.ws/
http://autobahn.ws/python/
http://autobahn.ws/python/

telegraphy Documentation, Release 0.1

3.4 django-telegraphy

Telegraphy aims to facilitate the integration of real-time features into a Django project.

Django is not yet prepared for handling real time web features. There are a lot of issues and technologies that must be
taken into account that are not trivial to integrate with Django: WebSockets, asynchronous servers, message queues,
advanced key-value stores, etc.

Telegraphy takes care of all that. It provides a simple, class-based way to provide your models with the capability to
generate events. These will reach the client application, in near-real-time. Besides:

• A management command to run the Gateway.

• Automatic signals-based CUD events (Create, Update, Delete).

• Custom events definitions.

• Template tags for easy configuration.

• A very simple JS API to make real-time Django apps a reality.

For installation notes, refer to the Installation instructions.

3.4.1 Management command: run_telegraph

django-telegraphy provides a management command to run the Gateway server. Until this functionality can be prop-
erly integrated in the existing runserver command, open a new console and run:

$ python manage.py run_telegraph

For more info about this process, go to the Gateway section.

3.4.2 Class based events generation

Currently, this app’s main feature is to give your models the ability to generate server-side events that will reach the
clients. To do that you must:

• Create an events.py file in your app’s directory (next to the models.py and urls.py).

• For every model you want to generate events, create a sub-class of
telegraphy.contrib.django_telegraphy.events.BaseEventModel:

from models import MyModel
from telegraphy.contrib.django_telegraphy.events import BaseEventModel

class MyEventsModel(BaseEventModel):
model = MyModel

• Register the event:

event = MyEventsModel()
event.register()

The events module provides an autodiscover method to automatically register all the events in the app.
This method is typically called in the project’s urls.py file:

12 Chapter 3. Contents

telegraphy Documentation, Release 0.1

from django.conf.urls import patterns
...
from telegraphy.contrib.django_telegraphy import events

events.autodiscover()

urlpatterns = ...

• Done. Every time an instance of MyModel is created, saved or deleted, an event will be generated and sent to
the clients through the Gateway.

BaseEventModel

telegraphy.contrib.django_telegraphy.events.BaseEventModel. The class’ allowed attributes
are:

model It is the only compulsory attribute. It references the target Django.db Model being extended.

fields (default = None) A list of the target model’s field names to include in the event data. If it is None then all the
Model’s fields will be included.

If the target model has a to_dict() attribute, then it is used to generate the event’s data, so the fields
attribute is ignored.

If this attribute is set, then exclude is ignored.

exclude (default = None) A list of the target model’s field names to ignore. They will not be sent in the event data, in
the case that fields is None.

If the target model has a to_dict() attribute, then it is used to generate the event’s data, so the exclude
attribute is ignored.

operations (default = (OP_CREATE, OP_UPDATE, OP_DELETE)) Indicates what operations in the target
model’s instances will generate events:

OP_CREATE: an event will be generated each time an instance of the target model is created .

OP_UPDATE: an event will be generated each time an instance of the target model is saved (not on creation).

OP_DELETE: an event will be generated each time an instance of the target model is deleted.

If false-ish then no events will be automatically generated by this model.

name (default = None) The name of the event. If none is provided, it is automatically generated from the app and
target model’s name/ For example: myapp.MyModel.

verbose_name (default = None) A verbose, human-friendly name for the event. If provided, it is sent in the event’s
meta-data. A helper for user-interface purposes.

Autodiscover

The events module provides an autodiscover method. It will search for all the models that are subclasses of
BaseEventModel, in all the project’s installed apps. Then it instantiates and registers each one of them.

3.4.3 Events

TBD.

3.4. django-telegraphy 13

telegraphy Documentation, Release 0.1

3.4.4 Authorization

TBD.

3.4.5 Communications with the gateway

XML-RPC based. TBC.

3.4.6 Generating custom events

TBD.

3.4.7 Template tags

TBD.

3.4.8 JavaScript API

TBC. The AutobahnJS-based API provides a Gateway representative which is responsible of:

• connect to a running instance of a Gateway

• subscribe to events. Free events? can we subscribe to unregistered Gateway events?

• provide means to handle connection changes (keep the connection alive?)

3.5 Authentication shortcomings

Django uses a HTTP Only cookie called sessionid. This cookie would not be exposed to JavaScript for security
issues. Since Gateway process may not run in the same context (port, ip, machine) where Django is running, we can’t
rely on it for authentication.

In order to authenticate clients we must pre share (key, secret) tokens, as part of the WAMP Challenge-Response-
Authentication mechanism. This tokens are created by the gateway whenever a page that uses telegraphy’s template
tag is rendered. These tokens are short lived, they expire once the websocket connection has been established.

TBC.

3.6 Examples

3.6.1 The basics

1. Run the Gateway server:

$ python manage.py run_telegraph

2. Create an events.py file in your app’s directory (next to the models.py and urls.py).

3. For every model you want to generate events, create a sub-class of
telegraphy.contrib.django_telegraphy.events.BaseEventModel:

14 Chapter 3. Contents

http://autobahn.ws/js
https://github.com/tavendo/AutobahnPython/tree/master/examples/wamp/authentication
https://github.com/tavendo/AutobahnPython/tree/master/examples/wamp/authentication

telegraphy Documentation, Release 0.1

from models import MyModel
from telegraphy.contrib.django_telegraphy.events import BaseEventModel

class MyEventsModel(BaseEventModel):
model = MyModel

4. Register the event:

event = MyEventsModel()
event.register()

The events module provides an autodiscover method to automatically register all the events in the app.
This method is typically called in the project’s urls.py file:

from django.conf.urls import patterns
...
from telegraphy.contrib.django_telegraphy import events

events.autodiscover()

urlpatterns = ...

5. Create you template, including Telegraphy template-tags

{% load telegraphy_tags %}
{% load static %}
<html>

<head>
<title>Simple Telegraphy API Example</title>
<script src=’{% static "telegraphy_demo/js/jquery-1.10.2.js" %}’></script>
{% telegraphy_scripts %}

</head>
<body>

<h1>Catching model events!</h1>
<ul id="event_catcher">
<script>

(function (){
var $event_catcher = $(’#event_catcher’);
Telegraphy.register(’telegraphy_demo.MyModel’,

function (tEvent){
console.log("Event", tEvent);
var new_line = $(’’).text("New instance");
$event_catcher.append(new_line);

});
})();

</script>
</body>

</html>

3.6.2 More examples

The demo_project in the repo includes a simple example page, very similar to the shown above.

Another more feature-rich, yet still simple example, is included in the change tracker page. In this case, the models
and events are the same, only the HTML and JS code changes.

3.6. Examples 15

https://github.com/machinalis/telegraphy/tree/master/demo_project
https://github.com/machinalis/telegraphy/blob/master/demo_project/apps/telegraphy_demo/templates/telegraphy_demo/simple.html
https://github.com/machinalis/telegraphy/blob/master/demo_project/apps/telegraphy_demo/templates/telegraphy_demo/change_tracker.html

telegraphy Documentation, Release 0.1

3.7 WAMP Authentication and Extended Session

A gateway is published in a URL. Many gateway instances can coexist. Telgraphy uses WAMP RPC/PubSub capabil-
ities adding some authentication mechanism.

3.7.1 Server RPC Methods

• /get_token

Params: None

Result: token (string)

Call made by the web application to the gateway to generate a unique valid authorization token to
be given to browser for later call to authenticate by the client.

• /authenticate

Params: auth_token (string), previous_session (string, optional)

Result:

– In any case when auth_token is invalid, CALLERROR will be returned.

– If pervious_session is empty or null, CALLRESULT idicates success.

– If previous_session is not null

* If previous_session matches to an existing gateway client, CALLRESULT indi-
cates success.

* Otherwise CALLERROR will be returned.

Call from the client(browser) to the gateway to authenticate.

If it’s new connection, only auth_token will be present. If the client is reconnecting, the previ-
ous_session will be sent.

• /subscriptions (optional)

Params: None Result: List of URIs o CURIs subscribed by the client.

• /subscriptors (optional)

16 Chapter 3. Contents

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

17

	Getting It
	Get Involved
	Contents
	Installation instructions
	The Telegraphy Project
	Gateway
	django-telegraphy
	Authentication shortcomings
	Examples
	WAMP Authentication and Extended Session

	Indices and tables

