

 Navigation

 	
 index

 	
 next |

 	telegraphy 0.1 documentation

Welcome to Telegraphy’s documentation!

Project home: https://github.com/machinalis/telegraphy/

The Telegraphy Project provides real time events for WSGI Python applications with additional
features such as event filtering, subscription persistence and authorization/authentication.

It’s initially intended for Django but you can extend it to any WSGI framework.

WebSocket pub/sub and RPC is based on AutobahnPython [http://autobahn.ws/] implementation of WAMP protocol [http://wamp.ws/]

Getting It

You can get Telegraphy by using pip:

$ pip install telegraphy

Or grab the source code from the GitHub repository and run setup.py:

$ git clone git://github.com/machinalis/telegraphy/telegraphy.git
$ cd telegraphy
$ python setup.py install

For more detailed instructions check out our Installation instructions. Enjoy.

Get Involved

We are eager to hear from the community: to receive suggestions, bug-reports, participate in discussions and
improve Telegraphy as much as it’s possible.

For all of that, we have a Google group in http://groups.google.com/group/telegraphy

Also, to guide the development efforts and issues, we are using
GitHub’s issue tracker [https://github.com/machinalis/telegraphy/issues].

Contents

	Installation instructions
	Get It
	Pip

	Download

	Source code

	System dependencies

	Installing the Django app

	The Telegraphy Project
	Architecture
	Overview

	Gateway
	Interface with the client

	Interface with the web-app

	Features (Notes)

	django-telegraphy
	Management command: run_telegraph

	Class based events generation
	BaseEventModel

	Autodiscover

	Events

	Authorization

	Communications with the gateway

	Generating custom events

	Template tags

	JavaScript API

	Authentication shortcomings

	Examples
	The basics

	More examples

	WAMP Authentication and Extended Session
	Server RPC Methods

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Carlos de la Torre, Nahuel Defossé.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	telegraphy 0.1 documentation

Installation instructions

Get It

Pip

You can get Telegraphy by using pip:

$ pip install telegraphy

You will need to have pip installed on your system. On linux install the python-pip package,
on windows follow this [http://stackoverflow.com/questions/4750806/how-to-install-pip-on-windows].
Also, if you are on linux and not working with a virtualenv, remember to use sudo
for both commands (sudo pip install telegraphy).

Download

Download the latest packaged version from
http://pypi.python.org/pypi/telegraphy/ and unpack it. Inside is a script called setup.py.
Enter this command:

$ python setup.py install

...and the package will install automatically.

Source code

Telegraphy is hosted on github:

https://github.com/machinalis/telegraphy

Source code can be accessed by performing a Git clone.

The following command will check the application’s source code out to a
directory called telegraphy:

Git:

$ git clone git://github.com/machinalis/telegraphy/telegraphy.git

You should either install the resulting project with python setup.py install
or put the telegraphy directory in your PYTHONPATH.

You can verify that the application is available on your PYTHONPATH by opening a Python interpreter and entering the following commands:

>>> import telegraphy

No exceptions should raise.

Keep in mind that the current code in the git repository may be different from the
packaged release. It may contain bugs and backwards-incompatible changes but most
likely also new goodies to play with.

System dependencies

One of our main dependencies, Twisted, requires gcc which is not available by default.

In Ubuntu-like systems you’ll need to install python-dev:

$ sudo apt-get install python-dev

To build the documentation, you’ll need to have Sphinx installed:

$ pip install Sphinx

To help in the documentation elaboration, we have a small script that detects changes while you are working
and automatically builds the doc: ./autobuild-docs.sh . If you want to use it, you’ll need inotify:

$ sudo apt-get install inotify-tools

Installing the Django app

Telegraphy’s Django app is bundled within the contrib directory in the Telegraphy root.

It is installed with the standard procedure: in your project’s settings.py file
add telegraphy.contrib.django_telegraphy to the INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'telegraphy.contrib.django_telegraphy',
 ...
)

The default TEMPLATE_CONTEXT_PROCESSORS [https://docs.djangoproject.com/en/dev/ref/settings/#template-context-processors]
do not include the request as a variable in the context so, if you haven’t done so yet, add django.core.context_processors.request:

TEMPLATE_CONTEXT_PROCESSORS = (
 'django.core.context_processors.request',
 ...
)

 Copyright 2013, Carlos de la Torre, Nahuel Defossé.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	telegraphy 0.1 documentation

The Telegraphy Project

This project is about making the real-time web easier for the Django developers (and to Python web-developers in general).

In a very general way, the issue we want to solve is How can I easily receive and handle server-side generated events, on the frontend?.

There’s a lot going on about this. There are many standards, protocols, tools, services and sophisticated frameworks related to this issue.
But most of them have at least one of the following problems:

	They don’t solve the whole problem

	They are not easy to use.

	They are not well documented.

	Therefore, our main objectives are to provide:

	
	well documented and tested tools,

	that are simple to install and use,

	which rely on open standards and protocols,

	to emmit and handle asynchronous, server-side events in real-time.

Architecture

Overview

	The Telegraphy project’s architecture has three main components:

	
	A web-application that registers and emits events.

	A gateway is a scalable, high-performance, asynchronous, networking engine.

	A client api which talks WAMP [http://wamp.ws/] (through a WebSocket) with a Gateway.
This is normally a JavaScript loaded from a web-page.

[image: _images/architecture-protocol-stack.png]
One of the objectives of the project is to keep these main components decoupled. For each one of them there are several available technologies
(and more will appear). For example:

	The web-app can be anything from a full-scale desktop or web application to a simple script.

	
	The gateway can be implemented using Twisted [http://twistedmatrix.com/], Tornado [http://www.tornadoweb.org/en/stable/],

	Node [http://nodejs.org/], ...

	The web-app and the gateway can communicate through an XML-RPC lib, or using message queues such as
ØMQ [http://zeromq.org/], RabbitMQ [http://www.rabbitmq.com/], ...

	The client can be anything implementing WAMP over WebSockets, typically a Javascript program.

The current implementation is based on Django [https://www.djangoproject.com] for the web-app and client side components.
The gateway is implemented using Twisted [http://twistedmatrix.com/].

	Django app

	A very useful app is provided. It features a class-based mechanism to extend the application’s models
with the capability to generate server-side events.

Also, template tags and a Javascript API (based on AutobahnJS [http://autobahn.ws/js]) are provided.
These make it really easy to handle the events on the client side.

	Gateway

	Currently, a Twisted-based server using AutobahnPython [http://autobahn.ws/python/]).

The web-app and gateway communicate through XML-RPC [https://twistedmatrix.com/documents/12.2.0/web/howto/xmlrpc.html]
with a shared-configuration approach.

 Copyright 2013, Carlos de la Torre, Nahuel Defossé.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	telegraphy 0.1 documentation

Gateway

WORK IN PROGRESS!!!

Interface with the client

The general idea behind the gateway is to provide an asynchronous-events management server.

Its interface with the client applications is based on the WAMP protocol [http://wamp.ws/]. The current
version relies on AutobahnPython [http://autobahn.ws/python/], which provides a fully asynchronous Twisted-based implementation.

Interface with the web-app

On the other side, the interface with the web-app is not yet fully defined. Currently, the gateway
receives event’s data through XML-RPC, which is very general and flexible, but not highly performant.

As the project’s functionalities develop and new features are added, the comunication of the
web-app and the gateway will be encapsulated in a specific API, whose implementation
will probably use some message-passing tool, such as ZMQ, RabbitMQ, etc.

The current ideas are based in some proxy module that provides a uniform interface for the web-app.
Such proxy communicates with a gateway representative, that is connected-to/part-of the current
running gateway instance. The proxy and representative can be in sync by a shared-configuration policy.

Such architecture would allow the web-app to be independent of the communication mechanism with the gateway.
Many implementations can be maintained and used as needed (XML-RPC, message-queue, etc.).

Features (Notes)

Provides an asynchronous-events management server.

Web-app agnostic: even when the current implementation uses Django,
the design of the gateway shall be completely independent of the web-app technology.
Ideally, the interfaces should be open, standard and well defined so that any program
should be able to interact with the gateway (even non-Python programs!).

The gateway has the responsability to assure continuous service. Changes in configuration or events definitions must be
transparent for the client (if possible). Otherwise, specific resources must be design in order to be able to
implement client-side mechanisms to remain “connected” (reconnect, etc).

Client representatives identification: on connection, the Gateway provides a unique identifier (token).
The representatives saves the token in a cookie. The cookie has an expiration time defined by the Gateway.

Persistent subscriptions: a client may decide that a given subscription to an event is ‘permanent’.
The subscription mechanism provided by the protocol must include some parameter to indicate this situation.

	
	Real Time Events

	
	Authentication

	
	Subscription handling

	
	Public vs Authenticated Events

	Subscription management (client or event based)

	
	Event management

	
	Class based event definition

	
	Event query language

	
	Performance

	Simplified client side subscription handling

	Easy channel emulation

 Copyright 2013, Carlos de la Torre, Nahuel Defossé.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	telegraphy 0.1 documentation

django-telegraphy

Telegraphy aims to facilitate the integration of real-time features into a Django project.

Django is not yet prepared for handling real time web features. There are a lot of issues and technologies
that must be taken into account that are not trivial to integrate with Django: WebSockets, asynchronous servers,
message queues, advanced key-value stores, etc.

Telegraphy takes care of all that. It provides a simple, class-based way to provide your models with the capability to
generate events. These will reach the client application, in near-real-time. Besides:

	A management command to run the Gateway.

	Automatic signals-based CUD events (Create, Update, Delete).

	Custom events definitions.

	Template tags for easy configuration.

	A very simple JS API to make real-time Django apps a reality.

For installation notes, refer to the Installation instructions.

Management command: run_telegraph

django-telegraphy provides a management command to run the Gateway server.
Until this functionality can be properly integrated in the existing runserver command,
open a new console and run:

$ python manage.py run_telegraph

For more info about this process, go to the Gateway section.

Class based events generation

Currently, this app’s main feature is to give your models the ability to generate server-side events
that will reach the clients. To do that you must:

	Create an events.py file in your app’s directory (next to the models.py and urls.py).

	For every model you want to generate events, create a sub-class of telegraphy.contrib.django_telegraphy.events.BaseEventModel:

from models import MyModel
from telegraphy.contrib.django_telegraphy.events import BaseEventModel

class MyEventsModel(BaseEventModel):
 model = MyModel

	Register the event:

event = MyEventsModel()
event.register()

The events module provides an autodiscover method to automatically register all the events in the app.
This method is typically called in the project’s urls.py file:

from django.conf.urls import patterns
...
from telegraphy.contrib.django_telegraphy import events

events.autodiscover()

urlpatterns = ...

	Done. Every time an instance of MyModel is created, saved or deleted, an event will be
generated and sent to the clients through the Gateway.

BaseEventModel

telegraphy.contrib.django_telegraphy.events.BaseEventModel.
The class’ allowed attributes are:

	model

	It is the only compulsory attribute. It references the target Django.db Model being extended.

	fields (default = None)

	A list of the target model’s field names to include in the event data.
If it is None then all the Model’s fields will be included.

If the target model has a to_dict() attribute, then it is used to generate the
event’s data, so the fields attribute is ignored.

If this attribute is set, then exclude is ignored.

	exclude (default = None)

	A list of the target model’s field names to ignore. They will not be sent in
the event data, in the case that fields is None.

If the target model has a to_dict() attribute, then it is used to generate the
event’s data, so the exclude attribute is ignored.

	operations (default = (OP_CREATE, OP_UPDATE, OP_DELETE))

	Indicates what operations in the target model’s instances will generate events:

OP_CREATE: an event will be generated each time an instance of the target model is created .

OP_UPDATE: an event will be generated each time an instance of the target model is saved (not on creation).

OP_DELETE: an event will be generated each time an instance of the target model is deleted.

If false-ish then no events will be automatically generated by this model.

	name (default = None)

	The name of the event. If none is provided, it is automatically generated from the app and target model’s name/
For example: myapp.MyModel.

	verbose_name (default = None)

	A verbose, human-friendly name for the event. If provided, it is sent in the event’s meta-data. A helper for user-interface purposes.

Autodiscover

The events module provides an autodiscover method. It will search for all the models that
are subclasses of BaseEventModel, in all the project’s installed apps. Then it instantiates and registers each one of them.

Events

TBD.

Authorization

TBD.

Communications with the gateway

XML-RPC based. TBC.

Generating custom events

TBD.

Template tags

TBD.

JavaScript API

	TBC. The AutobahnJS-based [http://autobahn.ws/js] API provides a Gateway representative which is responsible of:

	
	connect to a running instance of a Gateway

	subscribe to events. Free events? can we subscribe to unregistered Gateway events?

	provide means to handle connection changes (keep the connection alive?)

Authentication shortcomings

Django uses a HTTP Only cookie called sessionid. This cookie would not be exposed to JavaScript for
security issues. Since Gateway process may not run in the same context (port, ip, machine) where Django is running, we can’t
rely on it for authentication.

In order to authenticate clients we must pre share (key, secret) tokens, as part of the
WAMP Challenge-Response-Authentication [https://github.com/tavendo/AutobahnPython/tree/master/examples/wamp/authentication] mechanism. This tokens are created by the gateway
whenever a page that uses telegraphy’s template tag is rendered. These tokens are short lived,
they expire once the websocket connection has been established.

TBC.

 Copyright 2013, Carlos de la Torre, Nahuel Defossé.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	telegraphy 0.1 documentation

Examples

The basics

	Run the Gateway server:

$ python manage.py run_telegraph

	Create an events.py file in your app’s directory (next to the models.py and urls.py).

	For every model you want to generate events, create a sub-class of telegraphy.contrib.django_telegraphy.events.BaseEventModel:

from models import MyModel
from telegraphy.contrib.django_telegraphy.events import BaseEventModel

class MyEventsModel(BaseEventModel):
 model = MyModel

	Register the event:

event = MyEventsModel()
event.register()

The events module provides an autodiscover method to automatically register all the events in the app.
This method is typically called in the project’s urls.py file:

from django.conf.urls import patterns
...
from telegraphy.contrib.django_telegraphy import events

events.autodiscover()

urlpatterns = ...

	Create you template, including Telegraphy template-tags

{% load telegraphy_tags %}
{% load static %}
<html>
 <head>
 <title>Simple Telegraphy API Example</title>
 <script src='{% static "telegraphy_demo/js/jquery-1.10.2.js" %}'></script>
 {% telegraphy_scripts %}
 </head>
 <body>
 <h1>Catching model events!</h1>
 <ul id="event_catcher">
 <script>
 (function (){
 var $event_catcher = $('#event_catcher');
 Telegraphy.register('telegraphy_demo.MyModel',
 function (tEvent){
 console.log("Event", tEvent);
 var new_line = $('').text("New instance");
 $event_catcher.append(new_line);
 });
 })();
 </script>
 </body>
</html>

More examples

The demo_project [https://github.com/machinalis/telegraphy/tree/master/demo_project] in the repo includes a
simple example [https://github.com/machinalis/telegraphy/blob/master/demo_project/apps/telegraphy_demo/templates/telegraphy_demo/simple.html]
page, very similar to the shown above.

Another more feature-rich, yet still simple example, is included in the
change tracker page [https://github.com/machinalis/telegraphy/blob/master/demo_project/apps/telegraphy_demo/templates/telegraphy_demo/change_tracker.html].
In this case, the models and events are the same, only the HTML and JS code changes.

 Copyright 2013, Carlos de la Torre, Nahuel Defossé.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 previous |

 	telegraphy 0.1 documentation

WAMP Authentication and Extended Session

A gateway is published in a URL. Many gateway instances can coexist.
Telgraphy uses WAMP RPC/PubSub capabilities adding some authentication mechanism.

Server RPC Methods

	/get_token

Params: None

Result: token (string)

Call made by the web application to the gateway to generate a unique valid
authorization token to be given to browser for later call to authenticate by
the client.

	/authenticate

Params: auth_token (string), previous_session (string, optional)

	Result:

	
	In any case when auth_token is invalid, CALLERROR will be returned.

	If pervious_session is empty or null, CALLRESULT idicates success.

	
	If previous_session is not null

	
	If previous_session matches to an existing gateway client,
CALLRESULT indicates success.

	Otherwise CALLERROR will be returned.

Call from the client(browser) to the gateway to authenticate.

If it’s new connection, only auth_token will be present. If the client is
reconnecting, the previous_session will be sent.

	/subscriptions (optional)

Params: None
Result: List of URIs o CURIs subscribed by the client.

	/subscriptors (optional)

 Copyright 2013, Carlos de la Torre, Nahuel Defossé.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	telegraphy 0.1 documentation

Index

 Copyright 2013, Carlos de la Torre, Nahuel Defossé.
 Created using Sphinx 1.1.3.

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		telegraphy 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Carlos de la Torre, Nahuel Defossé.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

README.html

 Navigation

 		
 index

 		telegraphy 0.1 documentation »

Telegraphy

Project home: http://github.com/...

This projects facilitates the integration of real-time features into a Django project.

Django is not prepeared for handling real time web features. There are a lot of
technologies like asynchronous servers, message queues, advanced key-value stores
that are not trivial to integrate with Django. Telegraphy currently abstract messages
as classes. In order to send some event to the browser, you must define an event class.

You can easily extend you models to generate server-side, asynchronous, events that can be received
(and handled) in your frontend templates, in real time.

The Django Telegraphy App

Includes the following features:

		Simple management management command to run an asynchronous-events server.

		Generic model signal based create, update, delete events.

		Custom events definitions.

		Template tags and a JavaScript API for easy events management on the frontend.

Telegraphy

Provides an asynchronous-events management server, or Gateway with the following features:

		
		Real Time Events

		
		Authentication

		
		Subscription handling

		
		Public vs Authnticated Events

		Subscription management (client or event based)

		Persistant Subscriptions

		
		Event management

		
		Class based event definition

		
		Event query language

		
		Performance

		Simplified client side subscription handling

		Easy channel emulation

Installation

Just get it:

pip install telegraphy

You will need to have pip installed on your system. On linux install the
python-pip package, on windows follow this [http://stackoverflow.com/questions/4750806/how-to-install-pip-on-windows].
Also, if you are on linux and not working with a virtualenv, remember to use
sudo for both commands (sudo pip install telegraphy).

Examples

The django_telegraphy app allows you to easily extend your models so that they generate events
on creation, update or delete. Those events will reach your front end in real time.

Simply install the django_telegraphy app in your Django project. Then run the following command
in parallel to your web-server:

python manage.py run_telegraph

Extend your models so that they automatically generate events: create an events.py file next to your models.py

from apps.telegraphy.events import DjangoEvent
from apps.myapp.models import MyModel

class MyModelEvents(DjangoEvent):

 class Meta:
 model = MyModel

And that’s it! Now

You can find more examples in the documentation [http://simpleai.readthedocs.org/en/latest/]

More detailed documentation

You can read the docs online here [http://telegraphy.readthedocs.org/en/latest/].
Or for offline access, you can clone the project code repository and read them from the docs folder.

Help and discussion

Join us at the telegraphy google group [http://groups.google.com/group/telegraphy].

Authors

		Many people you can find on the contributors section [https://github.com/machinalis/telegraphy/graphs/contributors].

		Special acknowledgements to Machinalis [http://www.machinalis.com/] for the time provided to work on this project.

Machinalis also works on some other very interesting projects, like
SimpleAI [http://simpleai.machinalis.com/],
Quepy [http://quepy.machinalis.com/]
and more [https://github.com/machinalis].

 © Copyright 2013, Carlos de la Torre, Nahuel Defossé.
 Created using Sphinx 1.1.3.

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_images/architecture-protocol-stack.png
Client 8] & Gateway
(browser) |3 B|(AutobahnPython)
WLRPC |
HTTP

Web-app
(Django)

XLRPC

_static/down-pressed.png

_static/architecture-protocol-stack.png
Client 8] & Gateway
(browser) |3 B|(AutobahnPython)
WLRPC |
HTTP

Web-app
(Django)

XLRPC

